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ABSTRACT

Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature,

and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption
line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine

absorption model calculation is less than 10 -5 at the 18788.44 cm a line using a 200 mm absorption cell containing iodine

vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations.
However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers

only show minimum transmission of about 3x10 -3. This greatly reduces the applicability of the filtered Rayleigh scattering

technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present

study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to
reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at

18788.44 cm t are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of

the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the
light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by
other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also

observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser

oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency
showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the

stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements
showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic
wind tunnel.
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1. INTRODUCTION

Rayleigh scattering is defined as the elastic scattering of light from particles smaller than the wavelength of the light. In

particular, Rayleigh scattering from the gas molecules that constitute the flow offers the basis for a valuable diagnostic

technique because the Rayleigh scattering spectrum is a function of the molecular velocity distribution. Analysis of the
measured spectrum can provide gas density, temperature, and bulk velocity data. Both point and planar imaging techniques

can be used. Many applications involve flows in wind tunnels or other enclosed flows where optical access is provided by
windows. The passage of laser light through windows generally produces a relatively large amount of scattering. It is often

difficult to exclude this stray light from the field of view of the imaging system. Since the Rayleigh scattering is typically

weaker than this stray light, it is difficult to obtain the desired information from the image. This is particularly true for
molecular Rayleigh scattering, which is weaker than scattering from particulates or aerosols. One technique for eliminating

the stray light is to subtract it from the image. For example, if the flow chamber can be evacuated, an image can be obtained

that contains only the stray scattered light. This image can then be subtracted from images containing both the stray light and

the Rayleigh scattering to obtain an image of only the Rayleigh scattering. Another approach is to take images at two or more
known gas densities or with two or more gases with different Rayleigh scattering cross sections; the part of the measured light

due to stray scattered light can then be obtained by extrapolation. Since the stray light distribution is a function of the
location of the incident beam relative to the experimental apparatus, these measurements generally need to be done at each

measurement position. Also, for low light level measurements, which often are shot noise limited, subtraction of the stray

light eliminates the mean value, but not the random shot noise. A better approach is to filter the scattered light to eliminate
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thestraylightwhileretainingtheRayleighscattering.Thiscanbedoneif thewavelengthofthescatteredlightisshiftedfrom
thewavelengthoftheincidentlightandif asufficientlysharpcutoffornotchfilterisusedtoblocklightatthelaserfrequency
whilepassingthedesiredRayleighscatteredlight.ThisisthebasisforthetechniquecalledfilteredRayleighscattering.

FilteredRayleighscatteringusingamoleculariodinevaporabsorptioncellhasbeenappliedtoavarietyofflows.Some
applicationsof filteredRayleighscatteringusesmallparticlesentrainedin theflow.Theseparticlescanbeinjectedintothe
flow,or theycanbeformedbycondensationof watervapororsomeothergassuchascarbondioxide.Suchcondensates
frequentlyareformedinhighlyexpandedflows,suchassupersonicjetsandwindtunnels,andcanbeusedasafairlystrong
scatteringmediumforvisualization.Examplesincludestudiesofturbulentboundarylayers1,shockpositiondetermination2,
andfreejetstudies3.Relianceoncondensates,however,generallylimitsthemeasurementstovelocityandtovisualizationof
flowfeatures;quantitativeresultsforgasdensityandtemperaturearenotobtained.Inotherapplications,however,molecular
Rayleighscatteringcanbeusedtoderivedensity,temperature,andvelocityof puregasesorof gasmixtureswithknown
composition4'5.

In a previousstudy6,weusedfiltered Rayleigh scattering to measure mole fraction in a study of mixing of helium

injected into supersonic crossflow. However, the results were not as good as expected. The amount of stray scattered laser

light transmitted by the iodine cell was much larger than predicted by iodine absorption model calculations. This high level of
extraneous background resulted in a reduction in the accuracy of the mole fraction data. For example, the uncertainty in mole

fraction was increased from less than 5% to about more than 15% for a ratio of 20:1 of background to Rayleigh scattering

(fig. 2 of ref. 6). This discrepancy between the predicted and measured degree of suppression of laser light was the

motivation for the present study.

The objectives of the present study were to characterize the spectrum of the excess light transmitted by the iodine cell

and, if possible, to take measures to reduce the residual transmitted light. Transmission data as a function of laser frequency
for the iodine absorption line at 18788.44 cm -1 for a Q-switched, injection-seeded Nd:YAG laser are presented. A planar

mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell.
Measurements taken with the laser tuned to the center of the iodine absorption line show the residual light transmitted through

the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser

that exists in spite of the single frequency injection beam. A second broadband component also was observed, possibly

caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to
suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in

residual laser light. This improvement allows the iodine cell to block much more of the stray laser light in filtered Rayleigh

scattering experiments. Finally, examples of filtered Rayleigh scattering measurements showing the effect of the etalon on
measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel are presented.

2. FILTERED RAYLEIGH SCATTERING

Filtered Rayleigh scattering is based on the use of atomic or molecular filters to block undesired narrowband light.

Various filter media have been used for atmospheric temperature and velocity measurements including iodine vapor filters
with argon-ion lasers at 514.5 nm 7"s, a potassium filter with an injection-seeded pulsed alexandrite laser at 770 nm 9, a CW

tunable dye laser with a barium filter at 553.7 nm 1°, and a pulsed dye laser with a cesium filter at 388.9 nm 11. The technique
has been developed by Miles and his coworkers t2 for high speed fluid flow measurements using frequency-doubled pulsed

Nd:YAG lasers and iodine filters. Iodine is a useful filtering medium because its spectrum contains a number of strong

absorption lines at both the 514 nm argon-ion and 532 nm Nd:YAG wavelengths. More recent work 13has been directed at

using an atomic mercury line at 253.7 nm with a titanium:sapphire laser. Working in the ultraviolet offers the advantages of a

much larger Rayleigh scattering cross section and reduced reflectivity of metallic surfaces.

In filtered Rayleigh scattering the laser must emit essentially all of its light in a narrow bandwidth (much narrower than

the width of the absorption line being used). Also, the laser must be tunable, at least over a small wavelength range, so its
frequency can be set to the frequency of the absorption line. Light at this frequency (which includes the stray scattered laser

light) is strongly absorbed, while the portion of the Rayleigh scattered light that falls outside the absorption band is

transmitted. Assuming that the laser output has all of its energy near the maximum iodine absorption, the cell parameters can

be adjusted to give an almost arbitrarily large attenuation. The detector then only sees light that falls outside the absorption
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band.Othersourcesof light at frequencies other than the laser frequency may also exist; examples include light from the

laser flashlamps and fluorescence from the windows and surfaces illuminated by the laser beam. This broadband light may

need to be suppressed using narrow band interference filters.

If scattering from particulates or aerosols is used, the spectral width of the scattered light is very narrow. Broadening is

only caused by flow turbulence and by Brownian motion for sufficiently small particles.

If molecular Rayleigh scattering is used, the scattering is from the gas molecules making up the flow. Since the gas

molecules are moving with a range of velocities (usually given by a Maxwellian distribution) the light scattered is frequency
broadened as well as shifted by the mean gas velocity. Rayleigh scattering from low density gases generally has a Gaussian

spectrum, while scattering from high density gases has a triple peak spectrum due to collective effects of the gas molecules

(Brillouin scattering). The spectrum of molecular Rayleigh scattering for a low density gas is

1 [V21r(f-fo)-K'ul2 }
--exp - ,

S(f - f°)df - "v/--_aK I L aK df

(1)

wherefo is the laser frequency, K = ks-ko is the interaction wave vector with magnitude (wave number) K = (4/_,)sin(0J2), ko
and ks are the wave vectors of the incident and scattered light, 0s is the scattering angle, a = (2ffl'lm) m is the most probable

molecular speed (with I¢being Boltzmann's constant, m the molecular mass, T the gas temperature), and u is the mean gas

velocity. Note that the spectral peak is shifted by a frequency proportional to the component of the bulk velocity in the K
direction. (This shift, of course, is the same shift as would occur in scattering from particles imbedded in the flow.

For a sufficiently large mean velocity (at least supersonic) the molecular Rayleigh scattered light is completely shifted

outside the iodine absorption band. For lower mean velocities (or even zero velocity), some the Rayleigh scattered light is
within the absorption band while some falls outside. In this case, the detected light corresponds to only a fraction of the total

Rayleigh scattered light and has a spectrum given by

(/3= ff)d (2)

where It2(f) is the absorption spectrum of the filter. Figure 1 shows the concept with an idealized square-shaped absorption
line. Here the gas velocity is assumed to be high enough so that the Rayleigh scattered light is entirely shifted outside the

absorption band. For lower velocities, the Rayleigh scattering spectrum may partially overlap the absorption line, with the

consequence that the spectrum of the light emerging from the filter will be modified acccording to equation 2.

3. IODINE ABSPORPTION SPECTRUM

A model developed by Forkey 14 is used to calculate the absorption spectrum of iodine vapor. Figure 2 shows the

absorption spectrum for the wavelength range of a frequency-doubled Nd:YAG laser. For this example, the cell length is

200 mm, the iodine vapor pressure is 0.46 T, and the cell temperature is 323 K. For these iodine cell parameters, the
attenuation varies from line-to-line with the line at 18788.44 cm 1 having a minimum transmission of of about 5x10 -6. Figure 3

shows the calculated transmission for several iodine vapor pressures. Note that the attenuation of light in an absorption line is

a strong function of the iodine vapor pressure. A practically unlimited degree of attenuation is predicted for the higher vapor
pressures (e.g. at a vapor pressure of 1.1 T, the minimum transmission at 18788.44 cm a is less than lx10-8).

In particular, the iodine absorption model predicts a minimum transmission of 5x10 -6 at the 18788.44 cm -1 line for a

200 mm long absorption cell containing iodine vapor at 0.46 T. Measurements by Forkey 14using a frequency doubled CW

Nd:YAG laser agree with the model calculations. However the observed attenuation both in our work and in the work of
other researchers using injection seeded, frequency doubled, Q-switched Nd:YAG lasers is much less 14'15,with a minimum

transmission of only about 3x10 -3. This greatly reduces the applicability of the filtered Rayleigh scattering technique using

these lasers in experiments having large amounts of stray scattered laser light. One possible explanation is that the laser is
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lasinginoneormodesinadditiontothemodematchedtotheinjectionseedlaser.A secondpossibilityisthatthespectral
lineshapeisnotGaussian.

4. EXPERIMENT

An experiment was conducted to determine the spectrum of the light transmitted through an iodine cell with the laser
tuned to the center of the 18788.44 cm l absorption band. The setup is shown in figure 4. The output beam (10 mm dia.) of a

Q-switched, injection-seeded, frequency doubled Nd:YAG is directed to a diffuser. The beam pulse energy (about 500 mJ)
was reduced by reflection from the uncoated wedge (only one of the reflected beams was used). The diffuser was viewed with

a liquid nitrogen cooled CCD camera (pixel size, 15 pam square) through a planar mirror Fabry-Perot interferometer (free
spectral range = 111 GHz, mirror reflectance = 90%) and an iodine absorption cell (200 mm length, 70 mm diameter). The

fused silica cell has an appendage which serves as a reservoir for the iodine crystals. The temperature of the appendage was

controlled with a water cooled thermoelectric element that could be used to either heat the appendage above the water
temperature or cool it below the water temperature. This allowed the iodine vapor pressure to be set over a wide temperature

range. The main body of the cell was heated with electrical resistance tapes and was also temperature controlled. The

temperature of the cell was maintained at a higher temperature than the appendage to avoid iodine condensing on the cell
walls or windows. The CCD camera lens L1 (fringe forming lens) had a focal length of 50 mm, and the collimating lens L2

had a focal length of 85 mm. This setup allowed us to determine the spectral characteristics of the light transmitted through

the iodine cell. Two laboratory computers were used. One was used to control the CCD camera and store the images. The
second was equipped with a interface card that generated an analog voltage used to control the frequency of the injection seed
laser.

The Fabry-Perot interferometer (fig. 5) consists of two partially transmitting planar mirrors, which act as a multiple

beam interference device. Light from a point (Xd,Yd) is collimated by lens L2. After multiple reflections between the mirrors,

the light is focusing by L1 (the so-called fringe forming lens) on the detector plane. The transmission function (defined as the
fraction of light transmitted by Fabry-Perot for a monochromatic source with frequency f) t6 is

IFV(Ig)=[I+Fsin2(_]] -I (3)

where F = 1/(sin2(_2NE) where N E is the effective finesse, and _ is the phase change (neglecting any phase change on

reflection) of the light between successive reflections given by

IV (f,O )- 4_ f la dcos0, (4)

with d the mirror separation, p the refractive index of the medium between the mirrors, c the speed of light, and Or the

angle between a particular ray and the optical axis.

The observed pattern of a single frequency source has the typical ring pattern shown in figure 7a. With the innermost

fringe located on the optical axis (i.e., having zero radius), the other fringe radii are given rn = fLl(n_,o/d) _/2 for n = 1,2,3, • • •

• • n, where fLl is the focal length of the fringe forming lens. Note that frequency is not linear with radius, but the frequency

separations are all equal to the free spectral range FSR=c/2d. The mirror spacing for this work was set at 1.357 mm, giving a

free spectral range FSR = 111 GHz. This free spectral range was selected to be larger than the spectral feature of interest to

prevent the orders from overlapping. The fringe width is determined by the finesse NE of the Fabry-Perot. If the source has a
broadened frequency distribution, then the fringes are also broadened

For a monochromatic extended source with frequencyfo, the fraction of the incident light transmitted through the iodine
cell and the Fabry-Perot and observed on the CCD image at radius r is

T(r): l12(fo)In,[Ig(fo,O_)] (5)
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whereltz(]) is the transmittance of the iodine cell.

For a non-monochromatic source with spectrum SO'), the light transmitted through the Fabry-Perot interferometer is

given by

T( r) = _ S(f) lFp[ l_(f ,Or ) ] 1,2 (f) df (6)

Thus the observed fringe width is related to the source spectral width broadened by the Fabry-Perot instrument function. Note

that the iodine cell absorption is independent of the angle Or (except for changes in the optical path length through the cell)

5. EXPERIMENTAL RESULTS

The total intensity transmitted by the iodine cell through the Fabry-Perot interferometer as a function of laser frequency
is shown in figure 6 along with the transmission predicted by Forkey's model. The iodine vapor pressure was 0.46 T and the

cell body temperature was 323 K. The transmitted light was measured over a square region centered on the Fabry-Perot

interferometer fringes and included only the central part of the image where the transmitted light was not significantly

vignetted. Note that the measured transmission of the 532 nm light through the iodine cell is about two orders of magnitude

larger than the transmission predicted by Forkey's model. Fabry-Perot interferometer images taken at various laser
frequencies at the 18878.44 cm -_ iodine absorption line are shown in figure 7. If the absorption cell worked perfectly, no

rings would be visible and the entire image would be black. Figure 7a is for the laser frequency outside the absorption line.
This shows the expected sharp fringes for single frequency light. The lower part of the figure shows a horizontal trace of the

image through the center of the fringe pattern. Figure 7b shows an image with the laser frequency on the slope of the iodine

line. Here, the laser light at the injection frequency is somewhat suppressed , but the transmitted light is still dominated by

light at the injection frequency. Figure 7c shows the image with the laser tuned so that the light at the injection frequency is
almost completely suppressed. Light not at the injection frequency is visible. Finally, figure 7d shows the image with the

laser tuned to the maximum absorption. This image shows that the light within the absorption band is strongly attenuated, but

a significant amount of light remains at frequencies outside the absorption band. The residual light appears to have two

components. One has a FWHM bandwidth (measured from figure 7d) of 40 GHz. The other component appears to
broadband (with band width at least greater than the free spectral range of the Fabry-Perot interferometer). This broadband

component could be due to a variety of factors such as broadband emission from the laser flash|amps or fluorescence from the
iodine. Use of a narrowband interference filter can be used to reduce this broadband light, although the transmitted Rayleigh

scattering will typically be reduced by 50% or more depending on the filter bandwidth.

After these measurements were made, a solid fused silica etalon was installed in the oscillator cavity of the laser. The

etalon thickness was 3.0 mm, which corresponds to a free spectral range of 35.5 GHz. The purpose of using the intracavity

etalon with the injection seeded laser (which is not normally done) was to suppress the frequencies lying outside the iodine

absorption line that were observed in the first measurements. The etalon tilt relative to the optical axis was adjusted with lhe

injection seeder on to give a stable pulse with minimum Q-switch built up time delay. Images were then obtained using the

same setup used for the measurements described above. For these measurements, the seed frequency was set to the minimum
of the 18788.44 cm _ iodine line. Figure 8 shows images taken at iodine vapor pressures 0.01 T (-10°C), 0.08 T (10°C),

0.20 T (20°C), and 0.46 T (30°C), where the cold finger temperatures are shown in parenthesis. Calibrated neutral density
filters were used to reduce the intensity for the 0.01, 0.08, and 0.20 T images. A 10 nm laser line interference filter was also

used to reduce broadband light. Note that for the 0.46 T iodine vapor pressure image shown in figure 8d, no fringes are

visible. Comparison of this image with figure 7d shows the improvement in the rejection of the 40 GHz component of the

laser light.

Finally, some examples of data taken in the Lewis 4 inch by 10 inch supersonic wind tunnel are shown in figure 9. This

was part of a study of injectors reported separately, where the laser beam was formed into a sheet that passed across the test
section and was viewed obliquely 17. Figure 9a and 9b are time averages of 10 laser pulses. The etalon tended to drift out of

optimum alignment, which was probably caused by temperature changes in the laser head. When this happened, the amount

of stray laser light that passed through the iodine cell was greatly increased. High levels of stray light due to scattering from

the multiple reflections of the laser light sheet at the tunnel windows are shown as vertical lines on the images. Figure 9a
shows an image taken with the etalon out of alignment. The etalon was then adjusted and figure 9b shows the effect. The
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straylightwasgreatlysuppressed.Figures9cand9dshowanotherexample,takenwithsinglelaserpulses,of theetalonout
of alignment(9c)andin alignment(9d). In operation,changesfromthecorrectalignmentcanbeeasilymonitoredby
observingastrongreflectionsuchasseenin figures9aand 9c.

6. CONCLUSIONS

The degree of suppression of stray scattered laser light in filtered Rayleigh scattering measurements using injection

seeded, Q-switched, frequency doubled Nd:YAG lasers and iodine absorption cells is limited because a small component of

the laser light has a bandwidth of about 40 GHz. Because the bandwidth of this component is much greater than the width of
the iodine absorption line, it is not blocked. The result is that the minimum transmission of the iodine cell is only about

3x 10 3, which is much greater than the minimum transmission predicted by an iodine absorption model and by measurements

made with CW frequency doubled Nd:YAG lasers. Addition of an intracavity etalon to the oscillator cavity of the laser

resulted in a significant reduction in the laser light transmitted through the iodine cell. Adjustment of the etalon passband to
the injection seed laser frequency resulted in significant suppression of the 40 GHz component of the laser output. This

allows filtered Rayleigh scattering measurements to be made in experiments having larger amounts of stray scattered laser

light. One operational difficulty was the result of the etalon not being temperature controlled. Thus any changes in the
temperature of the laser head resulted in temperature tuning of the etalon. Because of this, the etalon required adjustment

approximately every hour or two during operation in order to maintain single frequency operation. Placing the etalon in a

temperature controlled oven should eliminate the need for frequent adjustments.
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Fig. 1 - Filtered Rayleigh scattering with ideal square notch filter and Gaussian spectrum.
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Fig. 2 - Transmittance of Iodine absorption cell calculated using Forkey's code _4. Cell length is 200 mm, iodine vapor

pressure is 0.46 T, and cell temperature is 323 K.
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calculated spectrum using Forkey's code ]4.
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(a) (b) (c) (d)

Fig. 7 - Fabry-Perot interferometer fringes for injection seeded Nd:YAG laser light filtered with iodine cell for different
laser frequencies; (a) 18788.473 cm _, (b) 18788.456 cm _, (c) 18788.453 cm _, (d) 18788.441 cm t

(a) (b) (c) (d)
Fig. 8 - Fabry-Perot interferometer fringes for injection seeded Nd:YAG (18788.44 cm _) with intracavity etalon filtered

with iodine cell at different iodine vapor pressures (a) 0.01 T, (b) 0.08 T, (c) 0.20 T (d) 0.46 T.

2000 4000 6000 1200040006000 300 400 500 600 70(] 300 400 500 600 70C

(a) (b) (c) (d)

Fig. 9 - Images of condensed water vapor in air injected transversely from 0.25 inch diameter hole into Mach 3 flow
(a) average, etalon not tuned (b) average, etalon tuned (c) single shot, etalon not tuned (d) single shot, etalon tuned.
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